Bayesian isotonic density regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian isotonic density regression.

Density regression models allow the conditional distribution of the response given predictors to change flexibly over the predictor space. Such models are much more flexible than nonparametric mean regression models with nonparametric residual distributions, and are well supported in many applications. A rich variety of Bayesian methods have been proposed for density regression, but it is not c...

متن کامل

Bayesian Isotonic Regression for Discrete Outcomes

1 SUMMARY. This article proposes a semiparametric Bayesian approach for inference on an unknown isotonic regression function, f (x), characterizing the relationship between a continuous predictor, X, and a response variable, Y , adjusting for covariates, Z. A novel prior formulation is used, which avoids parametric assumptions on f (x), while enforcing the non-decreasing constraint and assignin...

متن کامل

Bayesian isotonic regression and trend analysis.

In many applications, the mean of a response variable can be assumed to be a nondecreasing function of a continuous predictor, controlling for covariates. In such cases, interest often focuses on estimating the regression function, while also assessing evidence of an association. This article proposes a new framework for Bayesian isotonic regression and order-restricted inference. Approximating...

متن کامل

Bayesian Density Regression

This article considers Bayesian methods for density regression, allowing a random probability distribution to change flexibly with multiple predictors. The conditional response distribution is expressed as a nonparametric mixture of regression models, with the mixture distribution changing with predictors. A class of weighted mixture of Dirichlet process (WMDP) priors is proposed for the uncoun...

متن کامل

Bayesian Density Regression through Projections

We explore a Bayesian density regression model driven by linear projections of covariates. This offers an alternative to variable selection and provides the best linear compression of covariates for predicting a response in a regression setting. We provide a detailed construction of our probabilistic model based on smooth Gaussian processes and uniformly distributed linear subspaces. We prove p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2011

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/asr025